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1   |   INTRODUCTION

Alcohol content in the body is typically measured using 
invasive blood or less invasive breath samples. While 
well-controlled samples can produce accurate measures 
of alcohol content (Hlastala & Anderson,  2016), these 
measures only provide a snapshot in time. In addition to 
appearing in blood and breath, alcohol can appear above 
the skin surface by diffusion from subcutaneous capillar-
ies through the skin tissue and into the supradermal air. 

Because alcohol continually diffuses across the skin sur-
face, measurement of alcohol above the skin can provide 
a semi-continuous, non-invasive method for monitoring 
blood alcohol content. In legal and medical settings, de-
vices measuring supradermal alcohol concentration (SAC) 
are used to evaluate abstinence from alcohol consumption 
(Dougherty et  al.,  2014; Marques & McKnight,  2007). 
Consumer products allow users to monitor their alco-
hol concentration during and after consumption (Wang 
et  al.,  2019). For these measurements to predict alcohol 
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Abstract
Measurement of ethanol above the skin surface (supradermal) is used to moni-
tor blood alcohol concentrations (BAC) in both legal and consumer settings. 
Previously, the relationship between supradermal alcohol concentration (SAC) 
and BAC was described using partial and ordinary differential equations (PDE 
model: J. Appl. Physiol. 100: 649-55, 2006). Using a range of BAC profiles by vary-
ing absorption times and peak concentrations, the PDE model accurately pre-
dicted experimental measures of SAC. Recently, other mathematical models have 
relied on the PDE model. This paper proposes a new approach to modeling trans-
dermal ethanol kinetics using a mass transfer coefficient and only ordinary dif-
ferential equations (ODE model). Using a range of BAC profiles, the ODE model 
performed very similarly to the PDE model. The ODE model had slightly slower 
washout rates and slightly slower times to peak SAC and to zero SAC. Similar 
to the PDE model, a sensitivity analysis on the ODE model showed changes in 
solubility and diffusivity within the stratum corneum, stratum corneum thick-
ness, and the volume of gas above the skin affected model performance. This new 
model will streamline integration into larger physiologic models, reduce com-
putation time, and decrease the time to transform skin alcohol measurements to 
blood alcohol concentrations.
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consumption or blood alcohol concentration (BAC), the 
relationship between SAC and BAC must be understood.

A previously developed mathematical model (i.e., 
PDE model) demonstrated that diffusion was the primary 
mechanism of alcohol movement across the skin. The 
PDE model described diffusion of alcohol from the blood, 
across the skin tissue and into the supradermal air using a 
mix of ordinary differential (ODE) and partial differential 
equations (PDE) (Anderson & Hlastala, 2006). The PDE 
model was validated by demonstrating close agreement 
between model predictions and experimental data from 
the scientific literature. Both the model and experimental 
data showed that the peak SAC was attenuated and de-
layed relative to BAC. Additionally, the decrease in SAC 
was slower than the metabolic elimination rate and the 
time to return to a zero concentration was delayed as com-
pared to BAC.

Since publication, the PDE model has been utilized for 
a variety of applications. Scientifically, the PDE model ex-
plained the physiological relationship between SAC and 
BAC. The effects of anatomical and physio-chemical pa-
rameters on alcohol movement across the skin were used to 
explain the delays and attenuation of SAC relative to BAC 
(Karns-Wright et al., 2017; Marques & McKnight, 2009). 
Using measurements of SAC over time (i.e., SAC profile), 
a deconvolution algorithm was developed based off the 
PDE model to predict profiles of breath alcohol concen-
tration (BrAC) (Dumett et  al.,  2008). While algorithms 
deconvolving SAC to BrAC may or may not (i.e., blind 
deconvolution) use training datasets, the mathematics 
are computationally intensive (Dumett et al., 2008; Rosen 
et  al.,  2014). In addition to deconvolution, investigators, 
studying whole body alcohol kinetics, incorporated the 
PDE model into a larger model composed of ODEs that 
describe alcohol movement within the body. These studies 
evaluated the effects of absorption, metabolism, sex, and 
body mass on the appearance of alcohol on the skin sur-
face (Webster & Gabler, 2007, 2008).

While partial differential equations provide the most 
accurate description of alcohol diffusion across the skin, 
the PDE model inhibits economical and efficient integra-
tion in low-power settings (e.g., mobile devices) or within 
larger models that only use ODEs. Solving systems of PDEs 
via numerical integration requires simultaneous solution 
of hundreds of equations which is computationally inten-
sive and inefficient for implementation on a low-powered 
alcohol bracelet. Likewise, integrating the PDE model into 
a system of ODEs for whole body alcohol kinetics can be 
cumbersome. The mismatch in spatial resolution creates 
an impedance to data flow between models. Assumptions 
must be made so that the output from the low spatial res-
olution (i.e., compartmental) ODE model can be used as 
input into the high spatial resolution PDE model and vice 

versa. In addition to data flow, the differences in spatial 
gradient descriptions between the two models means dif-
ferent numerical algorithms are required to solve for the 
underlying alcohol concentrations (Anderson et al., 2003; 
Carlson et al., 2008).

The new approach described each skin compartment 
using a single ODE and alcohol concentration. The key to 
this approach was defining a mass transfer coefficient to 
describe diffusion between skin compartments. The per-
formance of the ODE model was compared to that of the 
PDE model using a range of blood alcohol profiles where 
absorption times and peak concentrations were varied. 
Additionally, a sensitivity analysis using Latin hypercube 
sampling was performed on the ODE model and the re-
sults were compared to a similar analysis performed on the 
PDE model. Differences in model performance and fac-
tors affecting prediction of BAC from SAC were discussed.

2   |   METHODS

2.1  |  Mathematical model

The skin model is composed of four compartments: 
blood, epidermis, stratum corneum, and gas (Figure 1). 
Blood flow through the capillary delivers dissolved 
ethanol to the epidermis. Ethanol flows through the 

F I G U R E  1   Schematic of ethanol transport from blood, through 
two skin layers, and into the supradermal airspace. Blood flow (Q̇)  
delivers ethanol at partial pressure Pa into the capillary where 
ethanol diffuses through the epidermis and stratum corneum 
before entering the gas compartment. Fresh gas (PI = 0) flowing at 
a rate V̇  above the skin removes ethanol from the system. Ethanol 
partial pressures in the capillary (Pc) and gas compartment (Pg) 
are well mixed. Ethanol partial pressures in the epidermis (Pe) 
and stratum corneum (Ps) are the partial pressures at the center 
of the compartment. The linear concentration gradient between 
epidermis and stratum corneum is an assumption required for the 
mass transfer coefficient. See Table 1 for more definitions.
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epidermis and the stratum corneum via diffusion be-
fore it reaches the gas compartment, which is ventilated 
with fresh air. Ethanol transport from sensible perspira-
tion (i.e., sweating) is ignored. Capillary and gas com-
partments were assumed to be individually well-mixed. 
Ethanol partial pressures in the epidermis (Pe) and stra-
tum corneum (Ps) are the partial pressures at the center 
of the compartment.

For this new approach, the mathematical model of eth-
anol kinetics across the skin was created by writing four 
ODEs to describe conservation of mass within each layer. 
To allow mass transfer between skin compartments, a 
mass transfer coefficient between the epidermis and stra-
tum corneum was defined (below). The prior PDE model 
consisted of a mixture two PDEs and two ODEs (Anderson 
& Hlastala, 2006). For that model, the spatial derivatives 
and boundary conditions eliminated the need for a mass 
transfer coefficient.

A mass transfer coefficient was derived using Fick's 
first law of diffusion (Bird et  al.,  1960; Bui et  al.,  1998). 
Assuming a linear concentration profile between com-
partments, the flux of mass was written as the molecular 
diffusion coefficient divided by the diffusion length and 
multiplied by the partial pressure difference across the 
diffusion length. The molecular diffusivity, e for epider-
mis and s for stratum corneum, divided by the thickness 
of the layer, Le for epidermis and Ls for stratum corneum, 
can be thought of as a conductance that is equivalent to 
the mass transfer coefficient. The solubility of ethanol in 
each compartment is described by βe and βs for the epi-
dermis and stratum corneum, respectively. Thus, the 
transfer coefficient is composed of two conductances; 

one corresponding to half of the epidermis layer and an-
other corresponding to half of the stratum corneum layer. 
Because conductances add as their inverse, the mass 
transfer coefficient between the epidermis and stratum 
corneum, ke,s, can be written as follows:

ke,s =
[

Le
2e�e

+
Ls

2s�s

]−1
.

Four coupled ODEs represent the movement of etha-
nol between blood, epidermis, stratum corneum, and gas. 
Figure  1 schematically describes this model, in which 
ethanol dissolved in blood is delivered to the capillary 
compartment at a flow rate Q̇ (mL/s) and ethanol appears 
via diffusion into the gas compartment from which gas 
is removed at a rate V̇  (mL/s). Equation (1) describes the 
rate of change of mass (β·V·P) of ethanol in the capillary 
blood compartment. It is equal to the rate of ethanol per-
fusing the capillary space via blood flow and the rate of 
ethanol leaving the blood compartment from blood flow 
and diffusion across the capillary membrane into the epi-
dermis. The partial pressure of ethanol entering and leav-
ing the blood compartment is Pa and Pc, respectively. The 
solubility of alcohol in blood is βb. The blood compart-
ment has a thickness equal to the diameter of a blood cell 
(Lc = 0.0007 cm) and a surface area of Ac.

Equations (2) and (3) describe accumulation of ethanol 
in the epidermis and stratum corneum, respectively, via 
diffusion of ethanol into and out of each compartment. 

(1)�bAcLc
dPc
dt

=

∙

Q �b
(

Pa − Pc
)

−
e�eAc

1

2
Le

(

Pc − Pe
)

Symbol Model parameters
Average 
value Uncertainty (%)

βb Solubility in blood* 232 ±10

βe Solubility in epidermis* 232 ±20

βs Solubility in stratum corneum* 211 ±25

e Molecular diffusivity–epidermis 
(cm2·s−1)

5.0 × 10−6 ±25

s Molecular diffusivity–stratum 
corneum (cm2·s−1)

5.0 × 10−10 ±50

Le Thickness of epidermis (cm) 0.02 ±25

Ls Thickness of stratum corneum 
(cm)

0.0015 ±25

Lg Thickness of gas compartment 
(cm)

0.5 ±30

Ac Capillary surface area (cm2) 7.5 × 10−2 ±50

Q̇ Blood flow (mL·s−1) 4.0 × 10−4 ±30

V̇ Convective gas flow (mL·s−1) 5.0 × 10−5 ±50

*Units for solubility are mL ethanol·100 mL medium−1·Torr−1.

T A B L E  1   Model parameters and 
uncertainty ranges.
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The partial pressures of alcohol in each compartment are 
Pe for the epidermis and Ps for the stratum corneum. The 
tissue and gas compartments have the same surface area 
(A = 1 cm2).

Equation  (4) describes accumulation of ethanol in 
the air space above the skin and enclosed by the ethanol 
measurement device. The rate of change of ethanol in this 
compartment is determined by addition of ethanol from 
the ambient air (PI = 0), subtraction of ethanol removed by 
a pump for analytical measurement, and addition of etha-
nol diffusing across the air-skin interface from the stratum 
corneum, adjacent to the compartment. Pg is the partial 
pressure of gas, Lg is the thickness of the compartment 
and βg is the solubility of ethanol in gas. Table 1 provides 
parameters definitions and their associated units.

The system of four ODEs was solved numerically to 
determine the partial pressure of ethanol in the epider-
mis, stratum corneum layers, and gas compartment as 
a function of time given a time varying arterial partial 
pressure of ethanol (BAC profile). Time derivatives were 
solved using LSODE, a time-integrating algorithm devel-
oped by Hindmarsh (1981). The equations were solved in 
terms of partial pressures. Additionally, the mathematical 
model was imported into JSim, a Java-based system for 
solving differential equations (Butterworth et  al.,  2013; 
Interagency Modeling Analysis Group,  2024). The JSIM 
model code was archived on the Interagency Modeling 
and Analysis Group website where instructions on down-
loading and running the model code were provided 
(Interagency Modeling and Analysis Group, 2024).

For presentation of results, the partial pressures of eth-
anol in the gas compartment were converted into equiva-
lent BAC (BACEQ) at 37°C using the following relationship.

where R is the universal gas constant 
(62,360 Torr·cm3·mol−1·K−1), and T is the temperature (K).

2.2  |  Parameters

The criteria used for parameter value selection was de-
scribed elsewhere (Anderson & Hlastala,  2006). A brief 
description is provided here. The skin tissue model has 
dimensions of 1 cm x 1 cm x L, where L is the thickness 
of each compartment. The “solubility” of ethanol in the 
gas phase, βg, is 0.132 mL ethanol 100 mL gas−1 Torr−1. 
For the 11 parameters, the average values, uncertainty 
ranges, and associated units are listed in Table  1. The 
average values were determined from a review of the sci-
entific literature and correspond to the average dimen-
sions and physical characteristics of healthy skin tissue 
(Anderson & Hlastala, 2006). For most of the parameters, 
the uncertainty ranges have not been quantified. Thus, 
the uncertainty ranges in Table  1 reflect the number of 
measurements and quality of information known about 
each parameter value. Smaller uncertainty ranges were 
assigned when parameters values were determined from 
careful or repeated measurements. Likewise, the prob-
ability distribution functions for these parameters are 
unknown. Thus, the simplest probability distribution 
function, a uniform (i.e., rectangular) probability distribu-
tion, was assumed for each parameter.

2.3  |  Simulations

The model simulated the movement of ethanol between 
the blood and air via diffusion through the skin. BAC 
profiles were defined by prescribing the absorption time, 
maximum BAC, and the metabolic elimination rate. 
Linear absorption and elimination rates were assumed. 
Absorption times ranged from 0.25 to 2.0 h in quarter-
hour increments. Maximum BAC (BACmax) values ranged 
from 0.02 to 0.10 g/dL in 0.02 g/dL increments. A meta-
bolic elimination rate of 0.018 g/dL/h was assumed for all 
simulations. For model parameters listed in Table 1, aver-
age values were used. Within the gas compartment, only 
fresh air (i.e., PI = 0) ventilation was simulated.

Model simulations resulted in gas phase ethanol pro-
files from which four values were calculated (Figure  2): 
(1) maximum equivalent ethanol concentration (Cg,max, 
Equation  5), (2) maximum rate of decreasing ethanol 
concentration (WOmax), (3) time difference (TPD) between 
BACmax and Cg,max, and (4) time difference between zero 
ethanol concentration (TZD) in the blood and that in the 
gas space (defined as Cg = 0.001 g/dL). While all four of 
these outputs can be measured experimentally using cur-
rent technology, in this study, these four outputs were com-
pared to prior experimental measurements reported in the 
scientific literature. Additionally, the effect of absorption 
time and BACmax on these four outputs was assessed and 

(2)�eALe
dPe
dt

=
e�eAc

1

2
Le

(

Pc − Pe
)

-ke,sA
(

Pe − Ps
)

(3)�sALs
dPs
dt

= ke,sA
(

Pe − Ps
)

−
s�sA

1

2
Ls

(

Ps − Pg
)

(4)�gALg
dPg

dt
=

∙

V �g
(

PI − Pg
)

+
s�sA

1

2
Ls

(

Ps − Pg
)

(5)BACEQ =
�b

�gRT
Pg
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compared to the analogous relationships provided by the 
PDE model.

2.4  |  Sensitivity analysis

Nine sensitivity analyses using Latin hypercube sampling 
(Blower & Dowlatabadi, 1994) were performed to deter-
mine the sensitivity of the four model outputs described 
above and in Figure 2 to changes in the 11 model param-
eters listed in Table 1. For a single sensitivity analysis, the 
ODE model simulated the transdermal kinetics of ethanol 
50 times with each simulation using a unique set of the 
11 parameter values. The value of each parameter dur-
ing each of the 50 simulations was randomly sampled. 
The rectangular probability distribution of each param-
eter was divided into 50 equal probability intervals. For 
each simulation, one interval for a given parameter was 
randomly sampled without replacement and the average 
value for that interval was assigned to be the parameter 
value. More detailed descriptions of this sampling method 
have been published (Anderson & Hlastala, 2006; Blower 
& Dowlatabadi, 1994; Bui et al., 1998).

The final step in the sensitivity analysis was to deter-
mine, for each output, a quantitative sensitivity index 
for each of the 11 parameters and establish a threshold 
to identify the significance of the sensitivity index. A par-
tial rank correlation coefficient (PRCC) between each 
input variable (i.e., model parameter) and output variable 
was used for the quantitative sensitivity index (Blower & 

Dowlatabadi, 1994). To determine the significance of each 
sensitivity index, each PRCC value was tested using a two-
sided Student's t-test to evaluate if it was statistically dif-
ferent from zero (p < 0.05), (Blower & Dowlatabadi, 1994). 
The sensitivity of the four outputs (Cg,max, WOmax, TPD, 
and TZD) to changes in the 11 model parameters was 
determined.

To explore the effects of alcohol absorption and elimi-
nation on the sensitivity of model outputs to model param-
eters, nine sensitivity analyses were performed. For each 
of the nine analyses, a different BAC profile was specified 
by varying the absorption time of alcohol into the blood 
(0.5, 1, or 2 h) or the maximum BAC (0.02, 0.05, or 0.10 g/
dL). The results were compared to the same analysis per-
formed on the PDE model (Anderson & Hlastala, 2006).

3   |   RESULTS

For all simulations, solutions of the model equations were 
well behaved with no instances of negative results, mass 
imbalance, or dependence on changes in time step.

Supradermal alcohol measurements are surrogates, 
delayed in time and attenuated in magnitude, for mea-
suring BAC. To allow easy comparison with BAC, SACs 
are converted into equivalent BACs for all presentations 
(Equation 5). Figure 2 compares the supradermal ethanol 
concentration, Cg, calculated by both the ODE model and 
the prior PDE model to the imposed BAC values at corre-
sponding time points. The imposed BAC profile has a rise 
time of 60 min, a maximum BAC (BACmax) of 0.06 g/dL,  
and a metabolic elimination rate of 0.018 g/dL/h. Using 
this BAC profile and the average model parameters 
(Table 1), the transport of ethanol through the skin is sim-
ulated using the ODE model. These results are compared 
to published results using the PDE model and the same 
model inputs (Anderson & Hlastala, 2006). The predicted 
Cg curves for the ODE (thin black) and the prior PDE (thin 
gray) models have very similar shapes and nearly overlap 
(Figure 2). As compared to the imposed BAC profile, both 
Cg curves show a maximum value, Cg,max, that is attenu-
ated (~2/3 of BACmax) and time-delayed, TPD, by approx-
imately 1 h. During the elimination phase, the Cg values 
decrease at slower rates (WOmax) than the imposed BAC 
profile. Both models predict the Cg curve to be shifted 
right, attenuated, and spread relative to the BAC profile. 
These characteristics are a direct consequence of the stra-
tum corneum diffusion barrier (see Section 3.1, Table 2, 
and Section 4).

The effects of different BAC profiles on the four model 
outputs (Cg,max, WOmax, TPD, and TZD defined in Figure 2) 
are examined. A variety of BAC profiles are specified by 
changing BACmax and absorption time while maintaining 

F I G U R E  2   Transdermal ethanol curves using PDE and 
ODE models are shown with depiction of model outputs. BAC 
profile (thick black line) was imposed, and the equivalent ethanol 
concentration in the gas compartment (Cg) was calculated using 
the ODE (thin black) and PDE (thin gray) models. The delay 
time between peaks (TPD) is the difference in time between the 
maximum BAC and maximum ethanol concentration in the gas 
compartment (Cg,max). The maximum washout rate (WOmax) 
was calculated as the negative slope of the Cg curve. TZD is the 
difference in time between zero ethanol concentration in the blood 
and gas space.
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a metabolic elimination rate of 0.018 g/dL/h for all BAC 
profiles. Simulations use average model parameter values 
(Table 1). Each model output for a given BAC absorption 
time is plotted against BACmax. Each curve corresponds to 
a BAC absorption time ranging between 0.25 and 2 h at 
0.25 h intervals.

The ODE and prior PDE models show the same 
relationship between a given model output and ab-
sorption time and a given model output and BACmax 
(Figures 3–6). Figure 3 shows that Cg.max is directly re-
lated to absorption time and BACmax. The ODE model 
predicts a smaller Cg,max than the prior PDE model for 
all conditions studied (solid lines as compared to gray 
area, respectively). Like Cg.max, the maximum observed 

washout rate (WOmax) is directly related to absorption 
time and BACmax (Figure 4). When BACmax <0.08 g/dL, 
the ODE model predicts a smaller WOmax than the prior 
PDE model. However, both models predict that WOmax 
asymptotes to ~ 0.0164 g/dL/h. when BACmax ≥0.08 g/dL. 
Figure 5 shows TPD to be directly related to BACmax and 
inversely related to absorption time. The ODE model 
predicts a slightly longer time delay (~10 min) between 
peaks as compared to the prior PDE model. Figure  6 
shows the time delay to zero, TZD, between BAC and Cg 
to be directly related to absorption time and BACmax. 
Like the prior PDE model, TZD asymptotes when 
BACmax ≥0.08 g/dL. However, the ODE model predicts a 
longer TZD (~30 min) for all conditions studied.

F I G U R E  3   Cg,max normalized by BACmax increases with 
BACmax and absorption time. Cg,max never equals BACmax. Top 
and bottom curves represent 2- and 0.25-h absorption times, 
respectively, with curves interposed at 0.25-h increments. The gray 
area indicates the range of curves for the prior PDE model.

F I G U R E  4   WOmax increases with increases in BACmax and 
absorption time. When BACmax ≥0.08 g/dL, WOmax = 0.0164 g/
dL/h. Top and bottom curves represent 2- and 0.25-h absorption 
times, respectively, with curves interposed at 0.25-h increments. 
The gray area indicates the range of curves for the PDE model. The 
imposed metabolic elimination rate of ethanol in blood was 0.018 g/
dL/h.

F I G U R E  5   Time delay, TPD, between BACmax and Cg,max 
increases as BACmax increases or the absorption time decreases. A 
30- to 100-min delay exists between these two peaks for all cases 
shown. Top and bottom curves represent 0.25- and 2-h absorption 
times, respectively, with curves interposed at 0.25-h increments. 
The gray area indicates the range of curves for the PDE model.

F I G U R E  6   TZD increases modestly with increases in BACmax 
and absorption time. When BACmax ≥0.08 g/dL, TZD = 3.9 h. Top 
and bottom curves represent 2- and 0.25-h absorption times, 
respectively, with curves interposed at 0.25-h increments. The gray 
area indicates the range of curves for the PDE model.



      |  7 of 11ANDERSON

3.1  |  Sensitivity analysis

Using LHS, nine sensitivity analyses were performed on 
the ODE model. The results were compared to the same 
analysis performed using the prior PDE model (Anderson 
& Hlastala, 2006). Figure 7 shows the Cg curves from 50 
simulations using both the ODE model (black lines) and 
the prior PDE model (gray lines). The 50 Cg curves result 
from the 50 parameter sets randomly selected via LHS. 
In Figure  7, all simulations use a BAC profile having a 
1-h absorption time and BACmax = 0.05 g/dL. Both models 
show large variation in Cg for the expected range of model 
parameters listed in Table 1. Consistent with Figure 2, the 
ODE model as compared to the prior PDE model shows, 

on average, a decreased maximum peak (Cg,max), a greater 
time-delay to the peak (TPD), a slower decrease in supra-
dermal ethanol (WOmax), and a greater time-delay to re-
turn to zero (TZD).

For the 50 LHS simulations presented in Figure  7, 
Table  2 summarizes the sensitivity relationship (using 
PRCC) between each model output (N = 4, Figure 2) and 
each model parameter (N = 11, Table 1). The sign in front 
of the PRCC value indicates the relationship between a 
parameter and an output. A negative (positive) PRCC 
value signifies an indirect (direct) relationship; that is, a 
decrease (increase) in the parameter will cause an increase 
(increase) in the output. The relationship (i.e., direct or 
indirect) between model outputs and model parameters 
was the same for both models irrespective of the statistical 
significance. While results for a single BAC profile are de-
scribed, this sensitivity relationship and statistical signifi-
cance between outputs and parameters is very similar for 
all nine BAC profiles studied.

For both models, all four outputs are statistically sen-
sitive to the three parameters defining the stratum cor-
neum: Ds, Ls, and βs. Of these, Ds and Ls have the greatest 
effect (i.e., greatest PRCC) on the model outputs over their 
uncertainty range. The parameters describing the gas 
compartment provide the next greatest effects on model 
outputs for both models. While the thickness of the gas 
compartment (i.e., volume) affects most all model out-
puts, the ventilation rate affects maximum gas concentra-
tion, Cg,max, and the maximum rate of ethanol decrease, 
WOmax. Unlike the prior PDE model, the ODE model has a 
significant sensitivity to the capillary surface area, Ac, and 
two parameters that describe the epidermal compartment, 
De and Le.

F I G U R E  7   Large uncertainty in the 11 model parameters 
cause large variability in the supradermal alcohol curves for both 
the ODE (black curves) and PDE (gray curves) models. Fifty 
supradermal alcohol curves were predicted by both models using 
the 50 parameter sets selected by LHS. A single BAC profile (thick 
black curve) was imposed for all simulations: 1 h absorption time, 
BACmax = 0.05 g/dL, and 0.018 g/dL/h. elimination rate.

T A B L E  2   Sensitivity analysis. Cg curves (Figure 7) from the ODE model using LHS were evaluated using PRCC.

Comp Parameter Cg,max WOmax Peak delay (TPD) End delay (TZD)

Gas V̇ −0.600* −0.589* −0.163 −0.320

Lg −0.325 −0.352 0.420** 0.379*

Stratum corneum βs 0.575** 0.568** −0.405 −0.344

s 0.969** 0.967** −0.941** −0.956**

Ls −0.950** −0.948** 0.916** 0.952**

Epidermis βe 0.114 0.123 0.054 0.042

e 0.264 0.321* −0.453 −0.285

Le −0.305 −0.339 0.590** 0.359*

Blood βb 0.040 −0.004 −0.100 −0.137

Q̇ −0.084 −0.083 0.090 0.085

Ac 0.406** 0.446** −0.625** −0.356

Note: The listed sensitivity coefficients (PRCC) are representative of the relationship between each model output (N = 4, Figure 2) and each model parameter 
(N = 11, Table 1). PRCC values are significant at the 0.05 level (bold), the 0.01 level (bold with *), or the 0.001 level (bold and **). Grayed boxes indicate 
statistically significant PRCC values reported previously for the PDE model (Anderson & Hlastala, 2006).
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4   |   DISCUSSION

Like the prior PDE model, ODE model predictions for 
Cg,max, WOmax, TPD, and TZD compare well to experimen-
tal measures from the scientific literature. The litera-
ture and ODE model show Cg,max to be less than BACmax 
(Brown, 1985; Swift, 2000). When normalized by BACmax, 
the ratio of Cg,max to BACmax (Cg,max/BACmax) varied be-
tween 0.39 and 0.75 for the ODE model and between 0.29 
and 0.50 from experimental measurements (Swift, 2000). 
Similarly, the maximum washout rate (WOmax) was al-
ways less than the imposed metabolic elimination rate of 
0.018 g/dL/h (Figure 4). Experimental measures demon-
strate this finding (Brown,  1985). In both experimental 
measurements and model predictions, a time delay be-
tween peaks (TPD) exists and increases with BAC. For the 
ODE model, TPD ranges from 30 to 110 min and increases 
with BAC (Figure 5). Experimental observations show: (1) 
TPD ranges between 30 and 120 min (Brown, 1985; Lawson 
et al., 2019; Swift, 2000; Swift et al., 1992), and (2) TPD in-
creases from 30 min when BAC <0.1 g/dL to 120 min when 
BAC >0.15 g/dL (Swift et al., 1992). Finally, the time delay 
between when BAC = 0 and Cg = 0 (TZD) is >2 h from ex-
perimental observation (Swift et al., 1992) and is approxi-
mately 4 h via the ODE model. These strong comparisons 
show the ODE model can closely predict the physiology 
and experimental measures of alcohol movement across 
the skin.

As compared to the PDE model, the ODE model predic-
tions of Cg,max/BACmax, WOmax, and TPD are very similar to 
those from the PDE model. On average, the ODE model 
shows a slightly greater attenuation of the peak alcohol 
concentration, a slightly smaller WOmax, and a slightly 
greater TPD, when compared to similar measures from the 
PDE model. For the delay between zeros, TZD for the ODE 
model is, on average, 30 min greater than that for the PDE 
model. For Cg,max/BACmax and WOmax, the greatest diver-
gence occurs at small BACmax whereas for TPD and TZD the 
divergence is not dependent on BACmax (Figures 3–6).

In general, the ODE and PDE models perform very 
similarly. However, small differences in model predictions 
result from differences in model structure. The sensitivity 
analysis (Table  2) detailed these differences via changes 
in relationship between the model outputs and parame-
ters. For both models, the model outputs were sensitive 
to parameters describing the gas phase and stratum cor-
neum. For the epidermis and blood compartments, the 
PDE model outputs (Cg,max and WOmax) were only sensi-
tive to the ethanol solubility in the epidermis. However, 
the ODE model outputs were sensitive to diffusivity and 
thickness of the epidermis, as well as, the surface area 
of the blood compartment. It should be noted that a siz-
able portion of the sensitivity is likely caused by the large 

uncertainties associated with these parameters. Reducing 
the uncertainty of these parameters through in vivo tracer 
techniques or ex-vivo experiments should improve model 
predictions (Anderson & Bassingthwaighte, 2007; Carlson 
et al., 2008; Young & Wagner, 1979).

To better understand the cause of the difference in SAC 
profiles between the ODE and PDE models, the six param-
eters describing the dermis and stratum corneum were, 
one-at-a-time, varied by ±10% using the same BAC pro-
files as used in the ODE sensitivity analysis. Decreasing 
Ls by 10% caused the SAC profile from the ODE model to 
best match (using residual sum of errors) that from the 
PDE model. Because Ls helps define the diffusive conduc-
tance and the ethanol capacitance (i.e., effective tissue vol-
ume for dissolving ethanol) within the stratum corneum 
(Equation 3), an additional simulation, where both Ls and 
s were decreased by 10%, allowed the effects of Ls on eth-
anol capacitance to be isolated. These simulations demon-
strate that the ODE model under accounts for diffusive 
conductance within the stratum corneum, which causes 
nearly 50% of the difference between the SAC profiles from 
the ODE and PDE models. Likewise, an underprediction 
of ethanol capacitance within the stratum corneum by the 
ODE model accounts for nearly 50% of the difference be-
tween the SAC profiles from the two models.

This under accounting for diffusive conductance and 
ethanol capacitance within the stratum corneum is a re-
sult of the different model structures, compartmental ver-
sus differential modeling, and the associated boundary 
conditions. The compartmental ODE model lumps the 
entire stratum corneum into a single description while the 
discretization associated with the PDE accounts for dif-
ferential changes throughout the space and may explain 
the difference in ethanol capacitance. Likewise, different 
boundary conditions may explain the differential impact 
of diffusive conductance. The PDE model has a local 
flux condition that depends on the concentration gra-
dient at the local boundary between the compartments; 
whereas, the ODE model uses a mass transfer coefficient 
that smooths the flux condition across each half of the 
adjacent compartments (i.e., not restricted to the local 
boundary). The local flux condition with discrete spatial 
resolution (PDE) versus the compartmental flux condition 
with lumped resolution likely drives the difference in dif-
fusive conductance.

Because the models perform similarly, the advantages 
of the new approach, for most applications, outweigh 
its limitations. Whereas both models are described by 
four (Wang et al.,  2019) differential equations, numer-
ical integration of the ODE model only requires solu-
tion of four equations while numerical integration of 
the PDE model requires solution of 100s of equations to 
account for the spatial gradient of alcohol concentration 
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(Anderson & Hlastala, 2006). The almost two-orders of 
magnitude fewer equations means the ODE model can 
be solved more rapidly. The simplicity and increased 
solution speed of the ODE model will improve the utility 
of predicting BAC from measurements of SAC near the 
time of the drinking event. When alcohol is consumed, 
SAC rises from zero to a peak and then returns to zero 
at a rate consistent with alcohol elimination in the liver. 
SAC can be measured using commercially available de-
vices (Wang et al., 2019). To date, transforming the SAC 
profile into a corresponding BAC profile is not performed 
by the measurement device because this “inverse” prob-
lem is computationally and, thus, energetically demand-
ing. These wearable devices are designed for low energy 
consumption to maximize battery life. By decreasing 
the number of calculations required, timely predictions 
of BAC from SAC measurements are a possibility on a 
low-power mobile device. Near “real-time” predictions 
of BAC could improve the quality of information and 
timely decision making (e.g., elect to get a confirmatory 
test). In addition to solution speed, the system of ODEs 
can be better integrated into full body models of alcohol 
pharmacokinetics. Because these kinetic models typi-
cally use ODEs (Webster & Gabler, 2007, 2008), using a 
single type of equation throughout the model will pro-
duce a uniform model structure and decrease compu-
tational time. While the simpler ODE model improves 
computation speed and integration, the ODE model is 
limited in its ability to describe the spatial profile of al-
cohol throughout each tissue compartment.

When using mathematic models to interpret SAC or 
predict BAC from SAC, the effects of experimental con-
ditions on skin transport properties and alcohol mea-
surements must be minimized. For example, poorly 
understood water content of the skin can affect the move-
ment of alcohol across the skin. The water content of the 
stratum corneum can vary due to dehydration, changes 
in atmospheric water content, and topical moisturizer 
(Blank et al., 1984; Wu et al., 1983). Increased water con-
tent can increase the thickness of stratum corneum, the 
solubility of ethanol in the stratum corneum, and the 
ethanol diffusion coefficient through stratum corneum 
(Dancik et al., 2013; Gajjar & Kasting, 2014; Scheuplein & 
Blank, 1971, 1973). Each of these factors can significantly 
affect the movement of ethanol across the skin (Table 2) 
and will give rise to the SAC variability shown in Figure 7. 
In addition to the effects on alcohol transport, the amount 
of water in the supradermal sample can affect the mea-
surement of alcohol when using a fuel cell sensor, the 
most common sensor used in transdermal devices. Studies 
have shown that sweating affects skin alcohol measure-
ment (Marques & McKnight,  2007; Wang et  al.,  2019). 
Additionally, changes in relative humidity are responsible 

for rapid fluctuations (i.e., “spikes”) in SAC (Li et al., 2021; 
Marques & McKnight, 2007). The common denominator 
is elevated water content, which is also known to affect 
the performance of fuel cells used to measure ethanol 
(Jalal et al., 2017, 2020). Because of this limitation, supra-
dermal humidity should be measured and, in fact, some 
devices have included a sensor to measure water content 
and track relative humidity to improve measurement ac-
curacy (Li et al., 2021; Wang et al., 2019).

Like the PDE model, the ODE model can be used to 
deconvolute (i.e., transform) SAC measurements into 
corresponding BAC. Instead of using BAC to calibrate 
the SAC deconvolution model, most studies have used 
BrAC measurements to calibrate the deconvolution model 
for SAC (Dai et al., 2016; Dumett et al., 2008; Luczak & 
Rosen,  2014; Rosen et  al.,  2014). However, investigators 
should use caution when calibrating against BrAC. Just 
like SAC is not BAC, breath alcohol is not blood alcohol. 
BrAC follows the arterial blood alcohol concentration 
whereas BAC measurements are venous in nature. As a 
result, BrAC can be much greater than BAC during the 
absorptive or rising phase (Hlastala & Anderson,  2016). 
More importantly, BrAC is significantly affected by a va-
riety of breath factors including inhaled air volume, ex-
haled air volume, vital capacity, breathing pattern, and 
breath temperature (Anderson & Hlastala, 2019; Hlastala 
& Anderson, 2007, 2016). Without well-controlled breath 
alcohol measurements, factors affecting breath alco-
hol concentration, like sex, height, and age which affect 
vital capacity, may confound the calibration of the SAC 
deconvolution model. For example, studies have shown 
that the sex of the subject can affect relationship between 
BrAC and SAC (Hill-Kapturczak et  al.,  2015; Marques 
& McKnight,  2009). Because breath samples were used, 
it cannot be known if this relationship was driven by 
sex-related factors affecting BrAC (as discussed above) 
or sex-related factors affecting the skin (e.g., thickness 
and hydration) (Giacomoni et  al.,  2009; Luebberding 
et al., 2013). Thus, if SAC is compared and calibrated to 
BAC, unnecessary confounding by uncontrolled factors 
affecting breath alcohol measurement will be minimized.

5   |   CONCLUSION

This manuscript describes a new approach for modeling 
transdermal ethanol kinetics. The new ODE model de-
tails alcohol movement from the capillary blood, across 
two skin layers and into the gas above the skin using 
four ODEs. The key to implementing this approach 
was defining a mass transfer coefficient to describe dif-
fusion between skin compartments. Outputs from the 
ODE model compared well with data from the literature. 
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When compared to a prior model (PDE model) that used 
a mixture of PDEs and ODEs, the ODE model performed 
similarly. However, the ODE model as compared to the 
PDE model had slightly slower washout rates and slightly 
faster times to peak and zero SACs. Like the PDE model, 
a sensitivity analysis demonstrated the ODE model was 
sensitive, primarily, to changes in solubility and diffusivity 
within the stratum corneum, stratum corneum thickness, 
and the volume of gas above the skin. The small differ-
ence in SAC profiles between the ODE and PDE models 
was almost completely caused by differences in the math-
ematical description of diffusive conductance and ethanol 
capacitance. The simpler ODE model will streamline in-
tegration into larger physiologic models, reduce compu-
tation time to generate solutions, and decrease the time 
needed to transform SAC measurements to predicted 
BAC values.
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